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 CHAPTER ONE: THE EVENT LOOP

The first chapter  helps you to understand how the Node.js event 

loop works, and how you can leverage it to build fast applications. 

We’ll also discuss the most common problems you might encounter, 

and the solutions for them. 

THE PROBLEM

Most of the backends behind websites don’t need to do complicated 

computations. Our programs spend most of their time waiting 

for the disk to read & write , or waiting for the wire to transmit our 

message and send back the answer.

IO operations can be orders of magnitude slower than data 

processing. Take this for example: SSD-s can have a read speed of 

200-730 MB/s - at least a high-end one. Reading just one kilobyte 

of data would take 1.4 microseconds, but during this time a CPU 

clocked at 2GHz could have performed 28 000 of instruction-

processing cycles.

For network communications it can be even worse, just try and ping 

google.com

$ ping google.com
64 bytes from 172.217.16.174: icmp_seq=0 ttl=52 
time=33.017 ms  
64 bytes from 172.217.16.174: icmp_seq=1 ttl=52 
time=83.376 ms  
64 bytes from 172.217.16.174: icmp_seq=2 ttl=52 
time=26.552 ms  
64 bytes from 172.217.16.174: icmp_seq=3 ttl=52 
time=40.153 ms  
64 bytes from 172.217.16.174: icmp_seq=4 ttl=52 
time=37.291 ms  
64 bytes from 172.217.16.174: icmp_seq=5 ttl=52 
time=58.692 ms  
64 bytes from 172.217.16.174: icmp_seq=6 ttl=52 
time=45.245 ms  
64 bytes from 172.217.16.174: icmp_seq=7 ttl=52 
time=27.846 ms 

The average latency is about 44 milliseconds. Just while waiting for 

a packet to make a round-trip on the wire, the previously mentioned 

processor can perform 88 millions of cycles. 
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THE SOLUTION

Most operational systems provide some kind of an Asynchronous 

IO interface, which allows you to start processing data that does 

not require the result of the communication, meanwhile the 

communication still goes on..

This can be achieved in several ways. Nowadays it is mostly done 

by leveraging the possibilities of multithreading at the cost of extra 

software complexity. For example reading a file in Java or Python is 

a blocking operation. Your program cannot do anything else while it 

is waiting for the network / disk communication to finish. All you can 

do - at least in Java - is to fire up a different thread then notify your 

main thread when the operation has finished.

It is tedious, complicated, but gets the job done. But what about 

Node? Well, we are surely facing some problems as Node.js - or 

more like V8 - is single-threaded. Our code can only run in one thread. 

SIDE NOTE: This is not entirely true. Both Java and Python have async 

interfaces, but using them is definitely more difficult than in Node.js. 

You might have heard that in a browser, setting 

setTimeout(someFunction, 0)  can sometimes fix things 

magically. But why does setting a timeout to 0, deferring execution 

by 0 milliseconds fix anything? Isn’t it the same as simply calling 

someFunction  immediately? Not really.

First of all, let’s take a look at the call stack, or simply, “stack”. I am 

going to make things simple, as we only need to understand the very 

basics of the call stack. In case you are familiar how it works, feel 

free to jump to the next section.

THE STACK

Whenever you call a functions return address, parameters and local 

variables will be pushed to the stack. If you call another function 

from the currently running function, its contents will be pushed on 

top in the same manner as the previous one - with its return address.

For the sake of simplicity I will say that ‘a function is pushed’ to the 

top of the stack from now on, even though it is not exactly correct.
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Let’s take a look!

function main () {
  const hypotenuse = getLengthOfHypotenuse(3, 4)
  console.log(hypotenuse)
}

function getLengthOfHypotenuse(a, b) {
   const squareA = square(a)
   const squareB = square(b)
   const sumOfSquares = squareA + squareB
   return Math.sqrt(sumOfSquares)
}

function square(number) {
   return number * number
}
 
main()

main  is called first:

then main calls getLengthOfHypotenuse with 3 and 4 as arguments
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afterwards square is with the value of  a

when square returns, it is popped from the stack, and its return value 

is assigned to  squareA. squareA is added to the stack frame of 

getLengthOfHypotenuse

same goes for the next call to square
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in the next line the expression  squareA + squareB  is evaluated

then Math.sqrt is called with sumOfSquares

now all is left for  getLengthOfHypotenuse  is to return the final 

value of its calculation
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the returned value gets assigned to  hypotenuse  in  main

the value of  hypotenuse  is logged to console

finally,  main  returns without any value, gets popped from the stack 

leaving it empty
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SIDE NOTE: You saw that local variables are popped from the stack 

when the functions execution finishes. It happens only when you work 

with simple values such as numbers, strings and booleans. Values 

of objects, arrays and such are stored in the heap and your variable 

is merely a pointer to them. If you pass on this variable, you will only 

pass the said pointer, making these values mutable in different stack 

frames. When the function is popped from the stack, only the pointer 

to the Object gets popped with leaving the actual value in the heap. 

The garbage collector is the guy who takes care of freeing up space 

once the objects outlived their usefulness.

ENTER NODE.JS EVENT LOOP

So what happens when we call something like setTimeout,  

http.get, process.nextTick, or fs.readFile? Neither of 

these things can be found in V8’s code, but they are available in the 

Chrome WebApi and the C++ API in case of Node.js. To understand 

this, we will have to understand the order of execution a little bit 

better.

Let’s take a look at a more common Node.js application - a server 

listening on localhost:3000/. Upon getting a request, the server 

will call wttr.in/<city> to get the weather, print some kind 

messages to the console, and it forwards responses to the caller 

after recieving them.
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‘use strict’  

const express = require(‘express’)  

const superagent = require(‘superagent’)  

const app = express()

app.get(‘/’, sendWeatherOfRandomCity)

function sendWeatherOfRandomCity (request, response) {  

  getWeatherOfRandomCity(request, response)

  sayHi()

}

const CITIES = [  

  ‘london’,

  ‘newyork’,

  ‘paris’,

  ‘budapest’,

  ‘warsaw’,

  ‘rome’,

  ‘madrid’,

  ‘moscow’,

  ‘beijing’,

  ‘capetown’,

]

function getWeatherOfRandomCity (request, response) {  

  const city = CITIES[Math.floor(Math.random() * CITIES.length)]

  superagent.get(`wttr.in/${city}`)

    .end((err, res) => {

      if (err) {

        console.log(‘O snap’)

        return response.status(500).send(‘There was an error getting                
        the weather, try looking out the window’)

      }

      const responseText = res.text

      response.send(responseText)

      console.log(‘Got the weather’)

    })

  console.log(‘Fetching the weather, please be patient’)

}

function sayHi () {  

  console.log(‘Hi’)

}

app.listen(3000)  

What will be printed out aside from getting the weather when a 

request is sent to localhost:3000?

If you have some experience with Node, you shouldn’t be surprised 

that even though  console.log(‘Fetching the weather, 

please be patient’)  is called after  console.log(‘Got the 

weather’)  in the code, the former will print first resulting in:
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Fetching the weather, please be patient  
Hi  
Got the weather  

What happened? Even though V8 is single-threaded, the underlying 

C++ API of Node isn’t. It means that whenever we call something 

that is a non-blocking operation, Node will call some code that will 

run concurrently with our javascript code under the hood. Once this 

hiding thread receives the value it awaits for or throws an error, the 

provided callback will be called with the necessary parameters.

SIDE NOTE: The ‘some code’ we mentioned is actually part of 

libuv. libuv is the open source library that handles the thread-pool, 

doing signaling and all other magic that is needed to make the 

asynchronous tasks work. It was originally developed for Node.js but 

a lot of other projects use of it by now.

To peek under the hood, we need to introduce two new concepts: the 

event loop and the task queue.

TASK QUEUE

Javascript is a single-threaded, event-driven language. This means 

that we can attach listeners to events, and when a said event fires, 

the listener executes the callback we provided.

Whenever you call  setTimeout,  http.get  or  fs.readFile,  

Node.js sends these operations to a different thread allowing V8 

to keep executing our code. Node also calls the callback when the 

counter has run down or the IO / http operation has finished.

These callbacks can enqueue other tasks and those functions 

can enqueue others and so on. This way you can read a file while 

processing a request in your server, and then make an http call 

based on the read contents without blocking other requests from 

being handled.

However, we only have one main thread and one call-stack, so in 

https://github.com/libuv/libuv
https://github.com/libuv/libuv/wiki/Projects-that-use-libuv


RisingStack 12

case there is another request being served when the said file is read, 

its callback will need to wait for the stack to become empty. The 

limbo where callbacks are waiting for their turn to be executed is 

called the task queue (or event queue, or message queue). Callbacks 

are being called in an infinite loop whenever the main thread has 

finished its previous task, hence the name ‘event loop’.

In our previous example it would look something like this:

1.	 express registers a handler for the ‘request’ event that will be 

called when request arrives to ‘/’

2.	 skips the functions and starts listening on port 3000

3.	 the stack is empty, waiting for ‘request’ event to fire

4.	 upon incoming request, the long awaited event fires, express 

calls the provided handler  sendWeatherOfRandomCity

5.	 sendWeatherOfRandomCity  is pushed to the stack

6.	 getWeatherOfRandomCity  is called and pushed to the stack

7.	 Math.floor  and  Math.random  are called, pushed to the stack 

and popped, a from  cities  is assigned to  city

8.	 superagent.get  is called with  ‘wttr.in/${city}’, the 

handler is set for the  end  event.

9.	 the http request to  http://wttr.in/${city}  is send to a 

background thread, and the execution continues

10.	‘Fetching the weather, please be patient’  is logged 

to the console,  getWeatherOfRandomCity  returns

11.	 sayHi  is called, ‘Hi’  is printed to the console

12.	 sendWeatherOfRandomCity  returns, gets popped from the 

stack leaving it empty

13.	 waiting for  http://wttr.in/${city}  to send it’s response 

once the response has arrived, the  end  event is fired.

14.	 the  anonymous handler  we passed to .end()  is called, 

gets pushed to the stack with all variables in its closure, 

meaning it can see and modify the values of  express, 

superagent, app, CITIES, request, response, city 

and all the functions we have defined

15.	 response.send()  gets called either with  200  or  500 

statusCode, but again it is sent to a background thread, so the 

response stream is not blocking our execution,  anonymous 

handler  is popped from the stack.
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So now we can understand why the previously mentioned 

setTimeout  hack works. Even though we set the counter to zero, 

it defers the execution until the current stack and the task queue is 

empty, allowing the browser to redraw the UI, or Node to serve other 

requests.

MICROTASKS AND MACROTASKS

If this wasn’t enough, we actually have more then one task queue. 

One for microtasks and another for macrotasks.

examples of microtasks:

• process.nextTick

• promises

• Object.observe

examples of macrotasks:

• setTimeout

• setInterval

• setImmediate

• I/O

Let’s take a look at the following code (on the next page) :
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console.log(‘script start’)

const interval = setInterval(() => {  
  console.log(‘setInterval’)
}, 0)

setTimeout(() => {  
  console.log(‘setTimeout 1’)
  Promise.resolve().then(() => {
    console.log(‘promise 3’)
  }).then(() => {
    console.log(‘promise 4’)
  }).then(() => {
    setTimeout(() => {
      console.log(‘setTimeout 2’)
      Promise.resolve().then(() => {
        console.log(‘promise 5’)
      }).then(() => {
        console.log(‘promise 6’)
      }).then(() => {
        clearInterval(interval)
      })
    }, 0)
  })
}, 0)

Promise.resolve().then(() => {  
  console.log(‘promise 1’)
}).then(() => {
  console.log(‘promise 2’)
})

this will log to the console:

script start  
promise1  
promise2  
setInterval  
setTimeout1  
promise3  
promise4  
setInterval  
setTimeout2  
setInterval  
promise5  
promise6 
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According to the WHATVG specification, exactly one (macro)task 

should get processed from the macrotask queue in one cycle of the 

event loop. After said macrotask has finished, all of the available 

microtasks will be processed within the same cycle. While these 

microtasks are being processed, they can queue more microtasks, 

which will all be run one by one, until the microtask queue is 

exhausted.

This diagram tries to make the picture a bit clearer:

In our case (on the next page):

 

https://html.spec.whatwg.org/multipage/webappapis.html#task-queue
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       --- CYCLE 1 --- 

1.	 `setInterval` is scheduled as task

2.	 `setTimeout 1` is scheduled as task

3.	 in `Promise.resolve 1` both `then`s are scheduled as microtasks

4.	 the stack is empty, microtasks are run 

 

Task queue:  setInterval,  setTimeout 1 

 

--- CYCLE 2 --- 

5.	 the microtask queue is empty, `setInteval`’s handler can be 

run, another `setInterval` is scheduled as a task, right behind 

`setTimeout 1` 

 

Task queue:  setTimeout 1,  setInterval 

 

--- CYCLE 3 --- 

6.	 the microtask queue is empty, `setTimeout 1`’s handler can be 

run, `promise 3` and `promise 4` are scheduled as microtasks,

7.	 handlers of `promise 3` and `promise 4` are run `setTimeout 2` 

is scheduled as task 

 

Task queue:  setInterval,  setTimeout 2 

 

--- CYCLE 4 --- 

8.	 the microtask queue is empty, `setInteval`’s handler can be 

run, another `setInterval` is scheduled as a task, right behind 

`setTimeout` 

 

Task queue:  setTimeout 2,  setInteval 

9.	 `setTimeout 2`’s handler run, `promise 5` and `promise 6` are 

scheduled as microtasks 

Now handlers of  promise 5  and  promise 6  should be run 

clearing our interval, but for some strange reason  setInterval  is 

run again. However, if you run this code in Chrome, you will get the 

expected behavior.
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We can fix this in Node too with process.nextTick and some mind-

boggling callback hell.

console.log(‘script start’)

const interval = setInterval(() => {  
  console.log(‘setInterval’)
}, 0)

setTimeout(() => {  
  console.log(‘setTimeout 1’)
  process.nextTick(() => {
    console.log(‘nextTick 3’)
    process.nextTick(() => {
      console.log(‘nextTick 4’)
      setTimeout(() => {
        console.log(‘setTimeout 2’)
        process.nextTick(() => {
          console.log(‘nextTick 5’)
          process.nextTick(() => {
            console.log(‘nextTick 6’)
            clearInterval(interval)
          })
        })
      }, 0)
    })
  })
})

process.nextTick(() => {  
  console.log(‘nextTick 1’)
  process.nextTick(() => {
    console.log(‘nextTick 2’)
  })
})

This is the exact same logic as our beloved promises use, only a little 

bit more hideous. At least it gets the job done the way we expected.

TAME THE ASYNC BEAST!

As we saw, we need to manage and pay attention to both task 

queues, and to the event loop when we write an app in Node.js - in 

case we wish to leverage all its power, and if we want to keep our 

long running tasks from blocking the main thread.

The event loop might be a slippery concept to grasp at first, but once 

you get the hang of it, you won’t be able to imagine that there is life 

without it. The continuation passing style that can lead to a callback 

hell might look ugly, but we have Promises, and soon we will have 
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async-await in our hands... and while we are (a)waiting, you can 

simulate async-await using co and/or koa.

One last parting advice:

Knowing how Node.js and V8 handles long running executions, you 

can start using it for your own good. You might have heard before 

that you should send your long running loops to the task queue. You 

can do it by hand or make use of async.js.

Happy coding!

The book continues with Chapter Two on the next page!

https://github.com/tj/co
http://koajs.com/
https://caolan.github.io/async/
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CHAPTER TWO: GARBAGE COLLECTION

In this chapter, you are going to learn how Node.js garbage 

collection works, what happens in the background when you write 

code and how memory is freed up for you.

MEMORY MANAGEMENT  

IN NODE.JS APPLICATIONS

Every application needs memory to work properly. Memory 

management provides ways to dynamically allocate memory chunks 

for programs when they request it, and free them when they are no 

longer needed - so that they can be reused.

Application-level memory management can be manual or automatic. 

The automatic memory management usually involves a garbage 

collector.

The following code snippet shows how memory can be allocated in  

C, using manual memory management (cont. next page) :
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#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {

   char name[20];
   char *description;

   strcpy(name, “RisingStack”);

   // memory allocation
   description = malloc( 30 * sizeof(char) );

   if( description == NULL ) {
      fprintf(stderr, “Error - unable to    
      allocate required memory\n”);
   } else {
      strcpy( description, “Trace by  
      RisingStack is an APM.”);
   }

   printf(“Company name = %s\n”, name );
   printf(“Description: %s\n”, description );

   // release memory
   free(description);
}

In manual memory management, it is the responsibility of the 

developer to free up the unused memory portions. Managing 

your memory this way can introduce several major bugs to your 

applications:

• Memory leaks when the used memory space is never freed up.

• Wild/dangling pointers appear when an object is deleted, but the 

pointer is reused. Serious security issues can be introduced when 

other data structures are overwritten or sensitive information is read.

Luckily for you, Node.js comes with a garbage collector, and you 

don’t need to manually manage memory allocation.

THE CONCEPT OF THE GARBAGE COLLECTOR

Garbage collection is a way of managing application memory 

automatically. The job of the garbage collector (GC) is to reclaim 

memory occupied by unused objects (garbage). It was first used in 
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LISP in 1959, invented by John McCarthy.

The way how the GC knows that objects are no longer in use is that 

no other object has references to them.

MEMORY BEFORE THE GARBAGE  COLLECTION

The following diagram shows how the memory can look like if you 

have objects with references to each other, and with some objects 

that have no reference to any objects. These are the objects that can 

be collected by a garbage collector run.

MEMORY AFTER THE GARBAGE COLLECTION

Once the garbage collector is run, the objects that are unreachable 

gets deleted, and the memory space is freed up.
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THE ADVANTAGES OF 

USING A GARBAGE COLLECTOR

• it prevents wild/dangling pointers bugs,

• it won’t try to free up space that was already freed up,

• it will protect you from some types of memory leaks.

Of course, using a garbage collector doesn’t solve all of your 

problems, and it’s not a silver bullet for memory management. Let’s 

take a look at things that you should keep in mind!

Things to Keep in Mind When Using a Garbage Collector:

• performance impact - in order to decide what can be freed up, the 

GC consumes computing power

• unpredictable stalls - modern GC implementations try to avoid 

“stop-the-world” collections

GARBAGE COLLECTION & MEMORY 

MANAGEMENT IN PRACTICE

The easiest way of learning is by doing - so I am going to show you 

what happens in the memory with different code snippets.

The Stack

The stack contains local variables and pointers to objects on the 

heap or pointers defining the control flow of the application.

In the following example, both  a  and  b  will be placed on the stack.

function add (a, b) {  
  return a + b
}

add(4, 5) 

The Heap

The heap is dedicated to store reference type objects, like strings or 

objects.
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The  Car  object created in the following snippet is placed on the 

heap.

function Car (opts) {  
  this.name = opts.name
}

const LightningMcQueen = new Car({name: 
‘Lightning McQueen’})

After this, the memory would look something like this:

Let’s add more cars, and see how our memory would look like!

function Car (opts) {  

  this.name = opts.name

}

const LightningMcQueen = new Car({name: ‘Lightning McQueen’})  

const SallyCarrera = new Car({name: ‘Sally Carrera’})  

const Mater = new Car({name: ‘Mater’})  

If the GC would run now, nothing could be freed up, as the root has 

a reference to every object. Let’s make it a little bit more interesting, 

and add some parts to our cars!
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function Engine (power) {  

  this.power = power

}

function Car (opts) {  

  this.name = opts.name

  this.engine = new Engine(opts.power)

}

let LightningMcQueen = new Car({name: ‘Lightning 
McQueen’, power: 900})  

let SallyCarrera = new Car({name: ‘Sally Carrera’, 
power: 500})  

let Mater = new Car({name: ‘Mater’, power: 100})  

What would happen, if we no longer use  Mater, but redefine it and 

assign some other value, like  Mater = undefined?
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As a result, the original  Mater  object cannot be reached from the root 

object, so on the next garbage collector run it will be freed up:

Now as we understand the basics of what’s the expected behaviour 

of the garbage collector, let’s take a look on how it is implemented in 

V8!

GARBAGE COLLECTION METHODS

In one of our previous articles we dealt with how the Node.js 

garbage collection methods work, so I strongly recommend reading 

that article. Here are the most important things you’ll learn there:

New Space and Old Space

The heap has two main segments, the New Space and the Old Space. 

The New Space is where new allocations are happening; it is fast to 

collect garbage here and has a size of ~1-8MBs. Objects living in the 

New Space are called Young Generation.

The Old Space where the objects that survived the collector in the 

New Space are promoted into - they are called the Old Generation. 

Allocation in the Old Space is fast, however collection is expensive 

so it is infrequently performed .

Young Generation

Usually, ~20% of the Young Generation survives into the Old 

Generation. Collection in the Old Space will only commence once 

it is getting exhausted. To do so the V8 engine uses two different 

https://blog.risingstack.com/finding-a-memory-leak-in-node-js/
https://blog.risingstack.com/finding-a-memory-leak-in-node-js/
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collection algorithms.

Scavenge and Mark-Sweep collection

Scavenge collection is fast and runs on the Young Generation, 

however the slower Mark-Sweep collection runs on the Old 

Generation.

A REAL-LIFE EXAMPLE - THE METEOR CASE-

STUDY

In 2013, the creators of Meteor announced their findings about a 

memory leak they ran into. The problematic code snippet was the 

following:

var theThing = null  
var replaceThing = function () {  
  var originalThing = theThing
  var unused = function () {
    if (originalThing)
      console.log(“hi”)
  }
  theThing = {
    longStr: new Array(1000000).join(‘*’),
    someMethod: function () {
      console.log(someMessage)
    }
  };
};
setInterval(replaceThing, 1000)  

Well, the typical way that closures are implemented is that every function 

object has a link to a dictionary-style object representing its lexical scope. 

If both functions defined inside replaceThing actually used originalThing, 

it would be important that they both get the same object, even if 

originalThing gets assigned to over and over, so both functions share 

the same lexical environment. Now, Chrome’s V8 JavaScript engine is 

apparently smart enough to keep variables out of the lexical environment 

if they aren’t used by any closures - from the Meteor blog.

Further reading:

• Finding a memory leak in Node.js

• JavaScript Garbage Collection Improvements - Orinoco

• memorymanagement.org

http://info.meteor.com/blog/an-interesting-kind-of-javascript-memory-leak
https://blog.risingstack.com/finding-a-memory-leak-in-node-js/
https://blog.risingstack.com/javascript-garbage-collection-orinoco/
http://www.memorymanagement.org/
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CHAPTER THREE: NATIVE MODULES

There are times when the performance of JavaScript is not enough, 

so you have to depend more on native Node.js modules.

While native extensions are definitely not a beginner topic, we 

recommend this chapter for every Node.js developer to get a bit of 

knowledge on how they work.

COMMON USE CASES OF 

NATIVE NODE.JS MODULES

The knowledge on native modules comes handy when you’re adding 

a native extension as a dependency, which you could have done 

already!

Just take a look at the list of a few popular modules using native 

extensions. You’re using at least one of them, right?

• https://github.com/wadey/node-microtime

• https://github.com/node-inspector

• https://github.com/node-inspector/v8-profiler

• http://www.nodegit.org/

There are a few reasons why one would consider writing native 

Node.js modules, these include but not limited to:

• Performance-critical applications: Let’s be honest, Node.js is great 

for doing asynchronous I/O operations, but when it comes to real 

number-crunching, it’s not that great of a choice.

• Hooking into lower level (e.g.: operating-system) APIs

• Creating a bridge between C or C++ libraries and Node.js

WHAT ARE THE NATIVE MODULES?

Node.js Addons are dynamically-linked shared objects, written in C or 

C++, that can be loaded into Node.js using the require() function, and 

used just as if they were an ordinary Node.js module.  

- From the Node.js documentation

https://github.com/wadey/node-microtime
https://github.com/node-inspector
https://github.com/node-inspector/v8-profiler
http://www.nodegit.org/
https://nodejs.org/en/docs/
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This means that (if done right) the quirks of C/C++ can be hidden 

from the module’s consumer. What they will see instead is that 

your module is a Node.js module - just like if you had written it in 

JavaScript.

As we’ve learned from the previous chapters, Node.js runs on the 

V8 JavaScript Engine, which is a C program on its own. We can write 

code that interacts directly with this C program in its own language, 

which is great because we can avoid a lot of expensive serialization 

and communication overhead.

Also, in the previous chapter we’ve learnt about the cost of the 

Node.js Garbage Collector. Although Garbage Collection can be 

completely avoided if you decide to manage memory yourself 

(because C/C++ have no GC concept), you’ll create memory issues 

much easier.

Writing native extensions requires knowledge on one or more of the 

following topics:

• Libuv

• V8

• Node.js internals

All of those have excellent documentation. If you’re getting into this 

field, I’d recommend to read them.

Without further ado, let’s begin:

PREREQUISITES

Linux:

• python (v2.7 recommended, v3.x.x is not supported)

• make

• A proper C/C++ compiler toolchain, like GCC

Mac:

• Xcode installed: make sure you not only install it, but you start it at 

least once and accept its terms and conditions - otherwise it won’t 

work!

http://docs.libuv.org/en/v1.x/
https://github.com/v8/v8/wiki
https://nodejs.org/api/
https://www.python.org/download/releases/2.7/
https://www.gnu.org/software/make/
https://gcc.gnu.org/
https://developer.apple.com/xcode/
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Windows

• Run  cmd.exe  as administrator and type  npm install 

--global --production windows-build-tools   

- which will install everything for you.

OR

• Install Visual Studio (it has all the C/C++ build tools preconfigured)

OR

• Use the Linux subsystem provided by the latest Windows build. With 

that, follow the LINUX instructions above.

CREATING OUR NATIVE NODE.JS EXTENSION

Let’s create our first file for the native extension. We can either use 

the  .cc  extension that means it’s C with classes, or the  .cpp 

extension which is the default for C++. The Google Style Guide 

recommends  .cc, so I’m going to stick with it.

First, let’s see the file in whole, and after that, I’m going to explain it 

to you line-by-line!

 

(Code snippet on the next page!)

https://www.visualstudio.com/
https://google.github.io/styleguide/cppguide.html


RisingStack 30

#include <node.h>

const int maxValue = 10;  
int numberOfCalls = 0;

void WhoAmI(const v8::FunctionCallbackInfo<v8::Value>& args) {  
  v8::Isolate* isolate = args.GetIsolate();
  auto message = v8::String::NewFromUtf8(isolate, “I’m a Node Hero!”);
  args.GetReturnValue().Set(message);
}

void Increment(const v8::FunctionCallbackInfo<v8::Value>& args) {  
  v8::Isolate* isolate = args.GetIsolate();

  if (!args[0]->IsNumber()) {
    isolate->ThrowException(v8::Exception::TypeError(
          v8::String::NewFromUtf8(isolate, “Argument must be a 
number”)));
    return;
  }

  double argsValue = args[0]->NumberValue();
  if (numberOfCalls + argsValue > maxValue) {
    isolate->ThrowException(v8::Exception::Error(
          v8::String::NewFromUtf8(isolate, “Counter went through the 
roof!”)));
    return;
  }

  numberOfCalls += argsValue;

  auto currentNumberOfCalls =
    v8::Number::New(isolate, static_cast<double>(numberOfCalls));

  args.GetReturnValue().Set(currentNumberOfCalls);
}

void Initialize(v8::Local<v8::Object> exports) {  
  NODE_SET_METHOD(exports, “whoami”, WhoAmI);
  NODE_SET_METHOD(exports, “increment”, Increment);
}

NODE_MODULE(module_name, Initialize) 

Now let’s go through the file line-by-line!

#include <node.h>

Include in C++ is like  require()  in JavaScript. It will pull 

everything from the given file, but instead of linking directly to the 

source, in C++ we have the concept of header files.

We can declare the exact interface in the header files without 

implementation and then we can include the implementations by 

their header file. The C++ linker will take care of linking these two 

together. Think of it as a documentation file that describes contents 

of it, that can be reused from your code.
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void WhoAmI(const v8::FunctionCallbackInfo<v8::Value>& args) {  

  v8::Isolate* isolate = args.GetIsolate();

  auto message = v8::String::NewFromUtf8(isolate, “I’m a Node Hero!”);

  args.GetReturnValue().Set(message);

}

Because this is going to be a native extension, the v8 namespace is 

available to use. Note the v8:: notation - which is used to access 

the v8’s interface. If you don’t want to include v8:: before using 

any of the v8’s provided types, you can add using v8; to the top of 

the file. Then you can omit all the v8:: namespace specifiers from 

your types, but this can introduce name collisions in the code, so be 

careful using these. To be 100% clear, I’m going to use v8:: notation 

for all of the v8 types in my code.

In our example code, we have access to the arguments the function 

was called with (from JavaScript), via the  args  object that also 

provides us with all of the call related information.

With  v8::Isolate*  we’re gaining access to the current JavaScript 

scope for our function. Scopes work just like in JavaScript: we can 

assign variables and tie them into the lifetime of that specific code. 

We don’t have to worry about deallocating these chunks of memory, 

because we allocate them as if we’d do in JavaScript, and the 

Garbage Collector will automatically take care of them.

function () {  
 var a = 1;
} // SCOPE

Via  args.GetReturnValue()  we get access to the return value 

of our function. We can set it to anything we’d like as long as it is 

from v8::  namespace.

C++ has built-in types for storing integers and strings, but JavaScript 

only understands it’s own  v8::  type objects. As long as we are in 

the scope of the C++ world, we are free to use the ones built into C++, 

but when we’re dealing with JavaScript objects and interoperability 

with JavaScript code, we have to transform C++ types into ones 

that are understood by the JavaScript context. These are the types 

that are exposed in the v8:: namespace like  v8::String  or 

v8::Object.
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void WhoAmI(const v8::FunctionCallbackInfo<v8::Value>& args) {  

  v8::Isolate* isolate = args.GetIsolate();

  auto message = v8::String::NewFromUtf8(isolate, “I’m a Node Hero!”);

  args.GetReturnValue().Set(message);

}

Let’s look at the second method in our file that increments a 

counter by a provided argument until an upper cap of 10.

This function also accepts a parameter from JavaScript. When 

you’re accepting parameters from JavaScript, you have to be careful 

because they are loosely typed objects. (You’re probably already 

used to this in JavaScript.)

The arguments array contains  v8::Objects  so they are all 

JavaScript objects, but be careful with these, because in this context 

we can never be sure what they might contain. We have to explicitly 

check for the types of these objects. Fortunately, there are helper 

methods added to these classes to determine their type before 

typecasting.

To maintain compatibility with existing JavaScript code, we have to 

throw some error if the arguments type is wrong. To throw a type 

error, we have to create an Error object with the 

v8::Exception::TypeError()  constructor. The following block 

will throw a  TypeError  if the first argument is not a number.

if (!args[0]->IsNumber()) {
    isolate->ThrowException(v8::Exception::TypeError(
          v8::String::NewFromUtf8(isolate, “Argument must be a 
number”)));
    return;
}

In JavaScript that snippet would look like:

If (typeof arguments[0] !== ‘number’) {  

  throw new TypeError(‘Argument must be a number’)

}

We also have to handle if our counter goes out of bounds. We can 

create a custom exception just like we would do in JavaScript: 

 new Error(error message’). 
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In C++ with the v8 api it looks like: 

v8::Exception:Error(v8::String::NewFromUtf8(isolate, 

“Counter went through the roof!”)));  where the isolate 

is the current scope that we have to first get the reference via the 

v8::Isolate* isolate = args.GetIsolate();.

double argsValue = args[0]->NumberValue();
if (numberOfCalls + argsValue > maxValue) {
  isolate->ThrowException(v8::Exception::Error(
        v8::String::NewFromUtf8(isolate, “Counter went through the 
roof!”)));
  return;
}

After we handled everything that could go wrong, we add the 

argument to the counter variable that’s available in our C++ scope. 

That looks like as if it was JavaScript code. To return the new 

value to JavaScript code, first we have to make the conversion 

from  integer  in C++ to  v8::Number  that we can access from 

JavaScript. First we have to cast our integer to double with 

static_cast<double>()  and we can pass its result to the  

v8::Number constructor.

auto currentNumberOfCalls =  

  v8::Number::New(isolate, static_cast<double>(numberOfCalls));

NODE_SET_METHOD  is a macro that we use to assign a method on 

the exports object. This is the very same exports object that we’re 

used to in JavaScript. That is the equivalent of:

exports.whoami = WhoAmI 

In fact, all Node.js addons must export an initialization function 

following this pattern:

void Initialize(v8::Local<v8::Object> exports);  
NODE_MODULE(module_name, Initialize) 

All C++ modules have to register themselves into the node module 

system. Without these lines, you won’t be able to access your 

module from JavaScript. If you accidentally forget to register your 

module, it will still compile, but when you’re trying to access it from 

JavaScript you’ll get the following exception:

https://gcc.gnu.org/onlinedocs/gcc-5.1.0/cpp/Object-like-Macros.html
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module.js:597  
  return process.dlopen(module, path._makeLong(filename));
                 ^

Error: Module did not self-register.  

From now on when you see this error you’ll know what to do.

COMPILING OUR NATIVE NODE.JS MODULE

Now we have a skeleton of a C++ Node.js module ready, so let’s 

compile it! The compiler we have to use is called  node-gyp  and it 

comes with  npm  by default. All we have to do is add a  

 binding.gyp file which looks like this:

{
  “targets”: [
    {
      “target_name”: “addon”,
      “sources”: [ “example.cc” ]
    }
  ]
}

npm install  will take care of the rest. You can also use  

node-gyp in itself by installing it globally on your system with 

npm install node-gyp -g.

Now that we have the C++ part ready, the only thing remaining is to 

get it working from within our Node.js code. Calling these addons 

are seamless thanks to the  node-gyp  compiler.  

It’s just a  require away.

const myAddon = require(‘./build/Release/addon’)  

console.log(myAddon.whoami())

This approach works, but it can get a little bit tedious to specify 

paths every time, and we all know that relative paths are just hard to 

work with. There is a module to help us deal with this problem.

The  bindings  module is built to make  require  even less work 

for us. First, let’s install the  bindings  module with  

npm install bindings --save, then make a small adjustment 

in our code snippet right over there. 
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We can  require  the bindings module, and it will expose all the 

.node native extensions that we’ve specified in the  binding.gyp  

files  target_name.

const myAddon = require(‘bindings’)(‘addon’)  
console.log(myAddon.whoami())  

These two ways of using the binding is equivalent.

This is how you create native bindings to Node.js and bridge it 

to JavaScript code. But there is one small problem: Node.js is 

constantly evolving, and the interface just tends to break a lot! This 

means that targeting a specific version might not be a good idea 

because your addon will go out of date fast.

Think ahead and use Native Abstractions for Node.js (NaN).

The NaN library started out as a third party module written by 

independent individuals, but from late 2015 it became an incubated 

project of the Node.js foundation.

NaN provides us a layer of abstraction on top of the Node.js API and 

creates a common interface on top of all versions. It’s considered a 

best practice to use NaN instead of the native Node.js interface, so 

you can always stay ahead of the curve.

To use NaN, we have to rewrite parts of our application, but first, let’s 

install it with  npm install nan --save. First, we have to add the 

following lines into the targets field in our  bindings.gyp. This will 

make it possible to include the NaN header file in our program to use 

NaN’s functions.

{

  “targets”: [

    {

      “include_dirs” : [

        “<!(node -e \”require(‘nan’)\”)”

      ],

      “target_name”: “addon”,

      “sources”: [ “example.cc” ]

    }

  ]

}

https://github.com/nodejs/nan
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We can replace some of the v8’s types with NaN’s abstractions 

in our sample application. It provides us helper methods on the 

call arguments and makes working with v8 types a much better 

experience.

The first thing you’ll probably notice is that we don’t have to have 

explicit access to the JavaScript’s scope, via the  

v8::Isolate* isolate = args.GetIsolate();  NaN handles 

that automatically for us. Its types will hide bindings to the current 

scope, so we don’t have to bother using them.

#include <nan.h>

const int maxValue = 10;  
int numberOfCalls = 0;

void WhoAmI(const Nan::FunctionCallbackInfo<v8::Value>& args) {  
  auto message = Nan::New<v8::String>(“I’m a Node Hero!”).ToLocalChecked();
  args.GetReturnValue().Set(message);
}

void Increment(const Nan::FunctionCallbackInfo<v8::Value>& args) {  
  if (!args[0]->IsNumber()) {
    Nan::ThrowError(“Argument must be a number”);
    return;
  }

  double argsValue = args[0]->NumberValue();
  if (numberOfCalls + argsValue > maxValue) {
    Nan::ThrowError(“Counter went through the roof!”);
    return;
  }

  numberOfCalls += argsValue;

  auto currentNumberOfCalls =
    Nan::New<v8::Number>(numberOfCalls);

  args.GetReturnValue().Set(currentNumberOfCalls);
}

void Initialize(v8::Local<v8::Object> exports) {  
  exports->Set(Nan::New(“whoami”).ToLocalChecked(),
      Nan::New<v8::FunctionTemplate>(WhoAmI)->GetFunction());
  exports->Set(Nan::New(“increment”).ToLocalChecked(),
      Nan::New<v8::FunctionTemplate>(Increment)->GetFunction());
}

NODE_MODULE(addon, Initialize) 

Now we have a working and also idiomatic example of how a  

Node.js native extension should look like.

First, we’ve learned about structuring the code, then about 

compilation processes, then went through the code itself line by line 

to understand every small piece of it. At the end, we looked at NaN’s 

provided abstractions over the v8 API.

There is one more small tweak we can make, and that is to use the 

provided macros of NaN.
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Macros are snippets of code that the compiler will expand 

when compiling the code. More on macros can be found in this 

documentation. We had already been using one of these macros, 

NODE_MODULE, but NaN has a few others that we can include as well. 

These macros will save us a bit of time when creating our native 

extensions.

#include <nan.h>

const int maxValue = 10;  
int numberOfCalls = 0;

NAN_METHOD(WhoAmI) {  
  auto message = Nan::New<v8::String>(“I’m a Node Hero!”).ToLocalChecked();
  info.GetReturnValue().Set(message);
}

NAN_METHOD(Increment) {  
  if (!info[0]->IsNumber()) {
    Nan::ThrowError(“Argument must be a number”);
    return;
  }

  double infoValue = info[0]->NumberValue();
  if (numberOfCalls + infoValue > maxValue) {
    Nan::ThrowError(“Counter went through the roof!”);
    return;
  }

  numberOfCalls += infoValue;

  auto currentNumberOfCalls =
    Nan::New<v8::Number>(numberOfCalls);

  info.GetReturnValue().Set(currentNumberOfCalls);
}

NAN_MODULE_INIT(Initialize) {  
  NAN_EXPORT(target, WhoAmI);
  NAN_EXPORT(target, Increment);
}

NODE_MODULE(addon, Initialize)  

The first  NAN_METHOD  will save us the burden of typing the long 

method signature and will include that for us when the compiler 

expands this macro. Take note that if you use macros, you’ll have 

to use the naming provided by the macro itself - so now instead 

of  args  the arguments object will be called  info, so we have to 

change that everywhere.

The next macro we used is the  NAN_MODULE_INIT  which provides 

the initialization function, and instead of exports, it named its 

argument  target  so we have to change that one as well.

The last macro is  NAN_EXPORT  which will set our modules interface. 

You can see that we cannot specify the objects keys in this macro, it 

will assign them with their respective names.

That would look like this in modern JavaScript:

http://en.cppreference.com/w/cpp/preprocessor/replace
http://en.cppreference.com/w/cpp/preprocessor/replace
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module.exports = {  
  Increment,
  WhoAmI
}

If you’d like to use this with our previous example make sure you 

change the function names to uppercase, like this:

‘use strict’

const addon = require(‘./build/Release/addon.node’)

console.log(`native addon whoami: ${addon.WhoAmI()}`)

for (let i = 0; i < 6; i++) {  
  console.log(`native addon increment: ${addon.
Increment(i)}`)
}

For further documentation refer to Nan’s Github page.

Example Repository

We’ve created a repository with all the code included in this post. 

The repository is under GIT version control, and available on GitHub. 

Each of the steps have their own branch, master is the first example, 

nan is the second one and the final step’s branch is called macros.

Conclusion

I hope you had as much fun following along, as we’ve had writing this 

book. We’d highly recommend getting into at least a bit of C/C++ to 

understand the lower levels of the platform itself. You’ll surely find 

something of your interest. :)

If you enjoyed this book, we recommend to check out our Node.js 

Debugging and Monitoring solution called Trace - which helps you 

to build even better applications! 

https://github.com/nodejs/nan
https://github.com/peteyy/native-addon-example
https://trace.risingstack.com/?utm_source=ebook&utm_medium=nodejs-at-scale-2&utm_campaign=trace

